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COMPARISON OF UP-SCALING METHODS IN POROELASTICITY AND
ITS GENERALIZATIONS

James G. Berryman1

ABSTRACT
Four methods of up-scaling coupled equations at the microscale to equations valid at the mesoscale

and/or macroscale for fluid-saturated and partially saturated porous media will be discussed, compared,
and contrasted. The four methods are: (1) effective medium theory, (2) mixture theory, (3) two-scale
and multiscale homogenization, and (4) volume averaging. All these methods have advantages for
some applications and disadvantages for others. For example, effective medium theory, mixture theory,
and homogenization methods can all give formulas for coefficients in the up-scaled equations, whereas
volume averaging methods give the form of the up-scaled equations but generally must be supplemented
with physical arguments and/or data in order to determine the coefficients. Homogenization theory
requires a great deal of mathematical insight from the user in order to choose appropriate scalings for
use in the resulting power-law expansions, while volume averaging requires more physical insight to
motivate the steps needed to find coefficients. Homogenization often is performed on periodic models,
while volume averaging does not require any assumption of periodicity and can therefore be related
very directly to laboratory and/or field measurements. Validity of the homogenization process is often
limited to specific ranges of frequency – in order to justify the scaling hypotheses that must be made
– and therefore cannot be used easily over wide ranges of frequency. However, volume averaging
methods can quite easily be used for wide band data analysis.So, we learn from these comparisons that
a researcher in the theory of poroelasticity and its generalizations needs to be conversant with two or
more of these methods to solve problems generally.

Keywords: poroelasticity, effective medium theory, homogenization, up-scaling

INTRODUCTION
The earth is typically probed with seismic waves in the range1−100 Hz, with well-logging

tools in the range1 − 50 kHz, and samples of the earth in the laboratory from200 − 1000
kHz. The pertinent wave speeds for water and typical solid earth materials like quartz are,
respectively, 1.5 km/s and about 6.0 km/s. So the range of wavelengths of interest in the
field can vary from as much as 60 to 6000 m in the field to as littleas 1.5 to 7.5 mm in the
laboratory. Clearly the main purpose of laboratory measurements of earth materials is generally
to elucidate the physical mechanisms of wave propagation inthe earth. But the differences
in the pertinent length scales is so great that unusual care must be taken to perform proper
interpretation of the results — taking into account all the inherent problems with up-scaling.

1Univ. California, Lawrence Livermore National Lab., P.O. Box 808 L-200, Livermore, CA 94551-9900 Tele-
phone: 925-423-2905 FAX: 925-423-6907 E-mail: berryman1@llnl.gov.
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In particular, since earth materials are notoriously heterogeneous, it is very important to have
some means of studying the effects of these heterogeneitieson waves. So up-scaling in earth
sciences applications is not an academic issue, but often the main scientific issue for many
important applications.

The most common approach to dealing with earth heterogeneity for seismic waves is to
assume the earth is homogeneous locally, but composed of many layers (Ewing et al. 1957;
Brekhovskikh 1980). This approach can be useful for applications to large scale earth imaging
and earthquake analysis. But in matters where fluids in the earth important, such as oil and
gas exploration, hydrology, etc., the elastic approximation is usually not good enough and
must either be supplemented or replaced altogether with more appropriate choices of equations
and analysis methods. Early examples of such analyses include Biot (1941), Frenkel (1944),
Gassmann (1951), Biot (1956a), Biot (1956b), Biot (1962) — all works which then provided a
strong foundation for modern poroelastic analysis.

Our goal here will be to give a brief accounting of some of the most important methods
used to do up-scaling in poroelasticity and also multi-scale poroelasticity. The main methods
we consider here are: (1) effective medium theory (Kuster and Toksöz 1974; Berryman 1992;
Berryman and Berge 1996), (2) mixture theory (Bedford and Drumheller 1979; Drumheller
and Bedford 1980; Bedford and Drumheller 1983; Bedford 1985), (3) two-scale and multiscale
homogenization (Burridge and Keller 1981; Auriault and Boutin 1994; Auriault and Royer
2002; Auriault 2002), and (4) volume averaging (Pride et al.1992; Pride and Berryman 1998;
Berryman and Pride 1998; Whitaker 1999; Whitaker 2002; Woodet al. 2003). All these
methods have advantages for some applications and disadvantages for others. In a short review,
it will not be possible to cover everything that is important. But we will try to cover here
those relationships among the methods that are usually not explored in other discussions. In
particular, it is the author’s attitude that these methods are not so much competitive as they are
complementary. It will be one of our main goals then to clarify why and in what sense this is
true.

EFFECTIVE MEDIUM THEORIES
Effective medium theories for heterogeneous media have theadvantage that they can be

used to obtain direct estimates of overall physical constants such as bulk modulus, shear mod-
ulus, density, etc. There has been a tremendous amount of work done along these lines in the
last 40 years, and recent progress on both bounding methods and effective medium theories
was summarized recently by Milton (2002). In the earth sciences, the most commonly used
effective medium theory in elasticity is the one developed by Kuster and Toksöz (1974). This
theory and a related one [usually called the Mori-Tanaka method (Benveniste 1987)] have been
discussed and their limitations explored by Berryman and Berge (1996).

For heterogeneous poroelasticity, there have been fewer effective medium theories devel-
oped and we will mention only two here, as originally described by Berryman (1992). The two
approaches are the CPA (Coherent Potential Approximation)and the DEM (Differential Effec-
tive Medium). We present just the results here. The derivations can be found the references.

Coherent Potential Approximation
Suppose the heterogeneous medium is composed of some number(sayn) of constituents,

then the bulk modulusK(x) = Kj , whenx is inside thejth constituent, and similarly for the
shear modulusG. Brackets〈·〉 imply a simple volume average. Then, for the bulk modulus
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estimate of the CPA, we have

1
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CPA + 4

3
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3
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CPA

〉

, (1)

while, for the shear modulus estimate, we have

1

G∗

CPA + F ∗

CPA

=

〈

1

G(x) + F ∗

CPA

〉

, (2)

where the functionF = F (K,G) is defined by

F = (G/6)(9K + 8G)/(K + 2G). (3)

Starred quantities in these formulas are the overall estimates, or else the functions evaluated
at those same starred values. Note that (1) and (2) are implicit coupled equations, requiring
simultaneous iteration for their solution. Formulas like (1) and (2) are based on the assumption
that the inclusions are spherical in shape. For ellipsoidalshapes, (1) and (2) are modified based
on Eshelby’s well-known results in elasticity (Eshelby 1957; Mavko et al. 1998).

Differential Effective Medium
If there are only two constituents (a binary mixture) whose volume fractions arex = v1

andy = v2 = 1−x, then suppose we know the value of the effective bulk modulusK∗

DEM(y)
at one value ofy. TreatingK∗

DEM(y) as the host medium andK∗

DEM (y + dy) as the effec-
tive constant after a small proportiondy/(1 − y) of the host has been replaced by spherical
inclusions of type-2, the bulk modulus estimate from the DEMmethod is determined by
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Since the host contains the volume fractionx of type-1 andy of type-2, on average a fraction
dy/(1 − y) of the host must be replaced by type-2 in order to change the overall fraction of
type-2 toy + dy. Taking the limitdy → 0 gives the first order differential equation

(1 − y)
d
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[K∗

DEM (y)] =
K2 − K∗
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3
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[
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3
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, (5)

where the initial host is pure type-1 soK∗

DEM (0) = K1. The corresponding formula for the
shear modulus is

(1 − y)
d

dy
[G∗

DEM (y)] =
G2 − G∗

DEM (y)

G2 + F ∗

DEM (y)
[G∗

DEM(y) + F ∗

DEM (y)] , (6)

whereF is again determined as in (3). Note that (5) and (6) are coupled and must therefore
be integrated simultaneously. There are two distinct results implied by (5) and (6), one for
type-1 as host and another, by interchanging roles of the constituents, for type-2 as host. In
contrast, CPA produces only one estimate and is, therefore,sometimes called the “symmetric
self-consistent” approach. DEM is obviously non-symmetric in this sense, depending explicitly
on one constituent or the other playing host.
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Brief Discussion
Although both of these sets of formulas are actually of the same form as would be found

in the simpler theory of elasticity, the constants and results quoted here forK∗ andG∗ are all
assumed to be the frame constants for porous constituents and for the porous frame overall.
Furthermore, both types of EMT estimates are supplemented in poroelasticity by additional
equations for the other coefficients in the full set of poroelastic equations. Space will not permit
us to pursue this discussion any more here. But the main pointto be made about these methods
is this: They sometimes give explicit, or more typically implicit (to be iterated or integrated),
formulas for all the coefficients in the equations. Results are approximate, but for the methods
presented here, the results are always within the known rigorous bounds (Milton 1985; Norris
1985; Avellaneda 1987; Milton 2002), and therefore always give reasonable approximations
to the results when the form of the equations is known and onlythe values of the coefficients
are needed. Related effective medium theory estimation methods have also been used recently
to clarify the behavior of the poroelastic shear modulus in the presence of undrained fluids by
Berryman et al. (2002).

MIXTURE THEORY
The term “mixture theory” is sometimes used as a generic termfor any and all up-scaling

methods. In this sense the venerated estimates of Voigt (1928) and Reuss (1929), which —
for isotropic composites — are just the mean and harmonic mean respectively of the elastic
constants, have been available since the 1920s and were for along period of time about the only
types of estimates known, except for effective medium theory estimates (Bruggeman 1935)
similar in spirit to those described in the previous section. But Hill (1952) later showed that
these estimates of Voigt and Reuss were really rigorous bounds on the elastic constants, thus
changing our view of such estimates forever.

For our present purposes, we will use “mixture theory” in a different sense, motivated
largely by work in the 1970’s and 80’s by Bedford and Drumheller (Bedford and Drumheller
1979; Drumheller and Bedford 1980; Bedford and Drumheller 1983; Bedford 1985). Their
approach was based on energy principles, and all of this workcould be viewed as variational
methods using either Lagrange’s or Hamilton’s principles.In this regard, their work is in the
same class as that of Biot’s works on poroelasticity (Biot 1941; Biot 1956a; Biot 1956b; Biot
1962), as well as Berryman and Thigpen (1985), Lopatnikov and Cheng (2002), and — of
course — many others. In their series of papers, Bedford and Drumheller showed how to use
variational principles for up-scaling in a number of different complex systems, including but
not limited to poroelastic systems.

One of the classic problems that must be dealt with in a poroelastic system — thus mak-
ing the theory ultimately much more difficult conceptually than simple elastic or viscoelastic
systems — is the fact that finite fluid permeability is an essential feature of all these systems.
Without this feature, the system is just elastic or viscoelastic. Furthermore, the main poroe-
lastic complications have to do with the ability of the fluid to move in or out of any given
domain of the pore system, and the time scales over which thisoccurs. This capability is dis-
tinct from features of any elastic system, linear or nonlinear, fractured or unfractured, because
the concept of a domain is itself rooted in the idea of the elastic or viscoelastic materials be-
ing in welded contact almost everywhere. Although any solidparticle may move substantially
from its original position at the beginning of any motion (orcalculation), nevertheless it always
remains relatively close to the same particles who were its neighbors at the beginning of the
motion/calculation. This trait is not necessarily shared by fluid particles (although for very
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small strains, as in the case of small amplitude sound waves,it is often satisfactory to treat the
system if it is also true for the pore fluids). So for very smallstrains, it may be adequate in some
cases to treat fluids purely elastically. But this case is probably again limited to problems that
lie outside the domain of interest when we are studying poroelasticity. Circumstances resulting
in trapped fluids can come into play dynamically if the frequencies of the motion involved are
are very high (Kaelin and Johnson 1998), or if permeability values can fluctuate greatly during
the motion so parts of the system become effectively undrained.

Biot’s theories
Biot’s papers on linear wave propagation in porous media (Biot 1956a; Biot 1956b; Biot

1962) all were based on a Lagrangian formulation that permitted the introduction of a dissipa-
tion functional in order to incorporate viscous losses due to the motion of pore liquids during
the passage of the wave. The early pair of papers is probably best known to most readers, but
the 1962 paper has conceptual advantages over the earlier ones, and so we tend to base our
work more on this paper than on the other two — however, there is still much to be learned
from all three. Biot also changed his notation for the coefficients in 1962, as this was made
necessary by the introduction of the concept of the increment of fluid contentζ as one of the
fundamental variables of the theory.

Energy functional
The reason for this shift is fairly easy to understand from the point of view Hamiltonian

dynamics. There is no particular reason to prefer one choiceof variables over another from
the point of view of the kinetic energy in the system. Each physically sensible choice involves
about the same analysis and the same amount of work. But, fromthe point of the internal
energy of the macroscopic system there is a clear perferencefor the notation of Biot (1962).
The reason is that, after we have analyzed the energy and macroscopic variables that go into it,
the result for an isotropic system can be written (notation used here is not Biot’s) as:

2E =
[

p2
c − 2αpcpf + αp2

f/B
]

/Kd, (7)

wherepc andpf are, respectively, the external confining pressure and the fluid pore pressure,
Kd is the bulk modulus of the drained system,α is the Biot-Willis parameter (Biot and Willis
1957), andB is Skempton’s coefficient (Skempton 1954). All the variables and coefficients in
this equation are well-defined macroscopic quantities thatcan be measured with relative ease
in the laboratory. No microstructural variables appear here. Starting from this equation it is
then natural in the context of Hamiltonian dynamics to ask what are the variables conjugate to
the macroscopic stressesσc = −pc andσf = −pf . The results are

e =
∂E

∂σc
and − ζ =

∂E

∂σf

. (8)

The straine is simply the overall strain of the system. The new variable (from the point of view
of elasticity) is the increment of fluid contentζ = φ(e− ef ), whereφ is the overall porosity of
the system andef is the overall strain of the pore fluid.

The internal energy of the system can now be rewritten in terms ofe andζ as

2E = Ku

[

e2 − 2Beζ + Bζ2/α
]

. (9)

The new coefficient appearing here is the undrained modulus of the systemKu = Kd/(1 −
αB), also known as Gassmann’s modulus (Gassmann 1951) — or the fluid substitution formula
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(since the fluid bulk modulus is contained inB). The constitutive relations following from these
energy equations are

e = − (pc − αpf ) /Kd and − ζ = −α (pc − pf/B) /Kd, (10)

and

−pc = Ku (e − Bζ) and − pf = BKu (e − ζ/α) . (11)

The meaning of the coefficientKd is very easy to understand as it is simply the bulk modulus
of the drained system (liquid either absent or free to move inand out of the system as required
under changes of confining pressurepc, while pf remains unchanged). Skempton’s coefficient
is defined for the other extreme of a fully undrained system, where the pore fluid pressure nor-
mally increases due to an increase in confirning pressure; thus,B ≡ (∂pf/∂pc)|ζ=0. Similarly,
the Biot-Willis effective stress coefficientα ≡ (∂pc/∂pf )|e=0 = 1 − Kd/Ks, whereKs is
the “unjacketed modulus” of the porous system. The modulusKs is exactly equal to the grain
modulus if this is constant throughout the system (Brown andKorringa 1975), but its rela-
tionship to the moduli of the constituents is more complicated when multiple constituents are
present. In general it should be treated as an effective modulus (Berryman and Milton 1991),
or as an experimental parameter to be determined.

Wave equations of single-porosity poroelasticity
For long-wavelength disturbances (λ >> h, whereh is a typical pore size) propagating

through a single-porosity porous medium, we define average values of the (local) displacements
in the solid and also in the saturating fluid. The average displacement vector for the solid frame
is u, while that for the pore fluid isuf . The average displacement of the fluid relative to the
frame isw = φ(u − uf ). For small strains, the frame dilatation ise, while the increment of
fluid content is defined by

ζ = −∇ ·w = φ(e − ef ). (12)

Biot introduces a kinetic energy functional in addition to the internal energy of (7) and
then uses a standard Lagrangian variational approach to derive the wave equations of motion.
With time dependence of the formexp(−iωt), the coupled wave equations that follow in the
presence of dissipation are

−ω2(ρu + ρfw) = H∇e − C∇ζ + Gd

(

∇2u−∇e
)

,

−ω2(ρfu + qw) = C∇e − M∇ζ = −∇pf , (13)

whereGd is the drained shear modulus,H, C, andM are bulk moduli,

ρ = φρf + (1 − φ)ρm, (14)

and

q(ω) = ρf [α/φ + iF(ξ)η/κω] . (15)

The kinematic viscosity of the liquid isη; the permeability of the porous frame isκ; the dy-
namic viscosity factor is given approximately [or see Johnson et al. (1987) for more discus-
sion], for our choice of sign for the frequency dependence, by

F(ξ) = 1

4
{ξT (ξ)/[1 + 2T (ξ)/iξ]}, (16)
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where

T (ξ) =
ber′(ξ) − ibei′(ξ)

ber′(ξ) − ibei′(ξ)
(17)

and

ξ ≡ (ω/ω0)
1

2 = (ωακ/ηφ)
1

2 = (ωh2/η)
1

2 . (18)

The functions ber(ξ) and bei(ξ) are the real and imaginary parts of the Kelvin function. The
dynamic parameterh is a characteristic length generally associated with and comparable in
magnitude to the steady-flow hydraulic radius. The tortuosity α ≥ 1 is a pure number related
to the frame inertia which has been measured (Johnson et al. 1982) and has also been estimated
theoretically (Berryman 1980; Berryman 1983).

The coefficientsH, C, andM are given by (Gassmann 1951; Geertsma 1957; Biot and
Willis 1957; Geertsma and Smit 1961; Stoll 1974)

H = Ku +
4

3
Gd = Kd +

4

3
Gd + (1 − Kd/Ks)

2M, (19)

C = (1 − Kd/Ks)M, (20)

where

M = 1/[(1 − φ − Kd/Ks)/Ks + φ/Kf ]. (21)

The constants are drained bulk and shear moduliKd andGd, the unjacketed bulk modulusKs,
and fluid bulk modulusKf . Korringa (1981) showed equations (19)-(21) to be correct as long
as the porous material may be considered homogeneous on the microscopic scale as well as the
macroscopic scale. Also, see a recent tutorial on Gassmann’s equations (Gassmann 1951) by
Berryman (1999).

This set of equations together with the identification of thefactors that determine the coef-
ficients in the equations is the lasting contribution to the field of poroelasticity that we attribute
to Biot, Gassmann, Skempton, and Willis by using their namesin reference to the various
equations and coefficients.

Up-scaling
At this point, the question could reasonably be asked “Has any up-scaling occurred yet?”

Biot’s work is very well motivated by the physics and by thosequantities that can be measured
and/or controlled in the laboratory. The equations shown are completely general for internal
energiesE of any poroelastic system. They may not provide everything we need to know
or understand about how fluids move, or how energy is dissipated in these systems, but they
are correct as far as they go. This theory is often described as “phenomenological,” meaning
that it provides equations that describe the behavior of thephysical system of interest, but still
requires measurements for the coefficients to be known. Thischaracterization is accurate, but
it should not be interpreted as an implicit criticism of the theory. To take a critical point of view
consistently for all such phenomenological theories is surely not fruitful, as for example most
theories including those of elasticity, Maxwell’s equations, etc., are also phenomenological in
exactly the same sense.
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What Biot has accomplished is very important nevertheless,as these equations are suffi-
ciently general that we can start making use of them to do up-scaling. In particular, because of
their very general nature, the same equations apply both at the microscale and the macroscale,
as well as at all the mesoscales in between these limits. There is a lower limit below which
Biot’s theory cannot be used, and this comes in the form of an REV (representative elementary
volume). This volume needs to have sufficient size so that it will generally include both solid
grains and fluids simultaneously. A typical rule of thumb is that a cubical REV should be about
two to five grains on a side (Bourbié et al. 1987), or more. Theoptimum size of the REV can
depend on the wavelength of the waves, but for seismic waves with large wavelengths this is
seldom an issue. For larger REVs and longer wavelengths, it clearly becomes essential to con-
sider up-scaling as the required effective coefficients in Biot’s equations may contain a great
many types of grains, pores, and fluids — and at many scales.

Mixture theory becomes relevant in this context because it is based on energy concepts,
much like Biot’s approach. However, mixture theory starts at the level of the individual con-
stituents, keeping track of the energy in each of these, and then providing a means of generating
the equations of motion for the overall system. In one of their first applications of this method,
Bedford and Drumheller (1979) applied their technique to porous media. The framework of
their approach was Eulerian, which is sensible for porous media when the resulting equations
of motion are linear. Berryman and Thigpen (1985) applied the same basic method to nonlinear
and especially semilinear [as defined by Biot (1973)] poroussystems, and showed that a La-
grangian approach was preferred in this case. But the resulting linear equations of motion are
the same for either the Eulerian or Lagrangian methods. The details of this work are a bit too
specialized for the present short review, and we will leave it to the interested reader to follow
up with the pertinent references.

HOMOGENIZATION THEORY
A two-space method of homogenization leading to equations having the form of Biot’s

equations has been presented by Burridge and Keller (1981).This method has been developed
by various authors including Bensoussan et al. (1978), Keller (1977), and Sanchez-Palencia
(1980). The method requires that the microscale of the heterogeneous porous medium is much
smaller than the macroscale of most interest. The method is systematic, leading to equations
at the macroscale from an analysis of the microscale behavior, which for the present problem
involves assuming the the solid components obey linearizedequations of elasticity, while the
fluid components obey linearized Navier-Stokes equations.Burridge and Keller (1981) show
that there are actually two possible solutions to the problem. One solution is essentially that
of Biot’s theory of wave propagation in poroelastic media. The other is a set of viscoelastic
equations. The small quantityε, being the ratio of the microscale size to the macroscale size, is
used to characterize various scaling regimes. The difference leading to the two quite different
results found by Burridge and Keller is that, when the scaledviscosity is treated as being of
order ε2, they get the Biot-Gassmann equations, whereas when it is treated as order unity,
they obtain equations of viscoelasticity instead. In the language of poroelasticity, the case
leading to viscoelastic equations is what is normally termed “undrained,” meaning that the
fluid does not have sufficient time for its pressure to equilibrate at the microscale throughout
the macromedium on the time scales of interest. This failureto equilibrate can occur due to low
fluid permeabilities, high viscosity, very high wave frequencies, or combinations of all these
effects when present.

The approach involves assuming that any quantityQ can be treated as if it is a function of

9



the two spatial scalesx andy = x/ε. The macroscale isx and the microscale isy. Spatial
gradients∇ of Q can then be usefully written as

∇Q(x,y) = ∇Q(x,x/ε) = ∇xQ + ε−1∇yQ. (22)

Thus, the scale separation can be explicitly and simply accounted for in such gradient equa-
tions. Furthermore, each quantityQ can also be treated as a function ofε, so that an asymptotic
expansion of the form

Q(x,y, ε) = Q0(x,y) + εQ1(x,y) +
ε2

2
Q2(x,y) + O(ε2) (23)

may be written. Combining (22) and (23) gives

∇Q = ε−1∇yQ0(x,y) + [∇xQ0(x,y) + ∇yQ1(x,y)] + O(ε), (24)

a result which gets used repeatedly in the subsequent analysis. Furthermore, Eq. (24) already
suggests the important result that, whenε is small —i.e., tending to zero, it must generally be
true that

∇yQ0(x,y) = 0, (25)

which is in fact a common result of this analysis.
If we let Ωs be the domain occupied by solid,Ωf the domain occupied by fluid, and∂Isf

be the interface between solid and fluid, then the linearizedequations for elasticity of the solid
in Ωs are

−ω2ρsus = ∇ · τ, where τ = L∇us, (26)

the linearized equations of Navier-Stokes for the fluid are

iωρfvf = ∇ · σf where σf = −pfI + νD∇vf and iωpf = −∇ · vf/Kf . (27)

The boundary conditions at the interfaces∂Isf are no slip: vf = iωus, and continuity of
normal stress:n ·σf = n ·τ. The fluid and solid densities areρf andρs, respectively. The fluid
viscosity isν, and its bulk modulus isKf . The stress tensors for fluid and solid areσf andτ ,
respectively, andpf is the fluid pressure.L is the fourth rank elastic stiffness tensor, andD is
the operator that produces the symmetrized deviatoric partof a second rank tensor.

We will use a notation slightly different from that of Burridge and Keller (1981) in order to
facilitate the comparisons between these results and thoseof Biot. Space constraints will not
permit us to follow the derivation of the equations further here. But one of the final macroscale
results of the analysis is given by

−ω2(ρu0 + ρfw) = ∇x · (τ0 − φp0I), (28)

whereρ = (1 − φ)ρs + φρf , andφ is the porosity. The overbar indicates a volume average
over the fast variabley. The second macroscale result is

−ω2 [ρfu0 + Γ(ω)w] = −∇xp0. (29)
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whereΓ(ω) is a viscodynamic operator. The theory also shows that the macroscale stress and
fluid pressure are determined by

τ0 − φp0I = J∇xu0 + C∇x ·wI (30)

and

p0 = −C∇x · u0 − M∇x · w, (31)

whereC andM are well defined scalar coefficients andJ is a fourth rank tensor, all of which
arise naturally within the two-scale analysis.

When equations (28)–(31) are compared with Biot’s equations (13), we find that the form
of these equations is identical — once we have taken care to interpret each of these expressions
in terms of the corresponding expressions in the other set ofequations, as was done in the orig-
inal publication by Burridge and Keller (1981). Thus, the two-space homogenization method
produces exactly the same equations as Biot found using his variational approach. One advan-
tage that the present method has is that it also produces definite formulas for the coefficients in
these equations, so — at least in principle — model calculations can be done to produce a set
of theoretical examples to study the quantitative behaviorof these coefficients. As far as I am
aware, this step has never been taken. It is not necessarily easy to compute these coefficients
from the formulas, but it would nevertheless be an interesting exercise in the theory to do so.

In contrast, the volume averaging methods to be discussed next also produce the same
equations, but they do not produce formulas for the coefficients. So the volume averaging
approach is phenomenological,i.e., producing a set of equations whose coefficients must be
determined experimentally.

VOLUME AVERAGING METHODS
Pride et al. (1992) studied the way in which the equations of motion for sound traveling

through a solid/fluid mixture can be derived from first principles when it is assumed that the
solid is porous, but contains only a single type of mineral. The fluid is homogeneous and
completely fills the pores. Various other authors have also studied volume averaging both
for the simple single-constituent poroelasticity and for multi-constituent generalizations such
as double-porosity poroelasticity (Tuncay and Corapcioglu 1995; Pride and Berryman 1998;
Berryman and Pride 1998; Pride and Berryman 2003a; Pride andBerryman 2003b).

The averaging theorem
The averaging theorem used by all these authors is due to Slattery (1967) and is based

on well-known mathematics (Green’s theorem and the divergence theorem) together with the
idea that in relatively small regionsvolume averages of spatial gradientsin statistically ho-
mogeneous media are presumably closely related togradients of volume averages. But care
must nevertheless be taken to account properly for behaviorof the averaged quantities at points
or surfaces where abrupt changes occur. In particular, whenthe quantity to be averaged ex-
ists on one side of an interface and does not exist on the otherside, an interior interface term
will contribute to the volume average of the derivative, butnot to the derivative of the volume
average.

Suppose thatQ is a quantity to be averaged.Q can be a scalar, vector, or tensor. For
convenience of the discussion, we will assume that the averaging volume is a finite sphere
centered at positionx, although other choices are also possible (Pride and Berryman 1998). We
label this volumeΩ(x) and the surface of this volume is∂Ω. The exterior surface has two parts
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∂Ω = ∂E0+∂EQ, with ∂E0 being the part where the quantity of interestQ vanishes identically
and∂EQ being the part whereQ 6= 0. For example,Q could represent some physical quantity
in the pore space and0 in the solid — or vice versa — depending on immediate interest. In
addition to the exterior surface, there are also interior surfaces whereQ changes abruptly to
zero and we label such surfaces∂IQ, for interior. The interior surface is the bounding surface
for the region we will labelΩQ, i.e., the region wherein the quantityQ to be averaged is
nonzero. With these definitions, Green’s theorem gives

∫

Ω

∇Qd3x =

∫

ΩQ

∇Qd3x =

∫

∂EQ

n̂QQdS +

∫

∂IQ

n̂QQdS, (32)

wheredS is the infinitesimal of the surface volume element, andn̂Q is the unit outward normal
vector from the region containing nonzeroQ. The main point of (32) is just that∂EQ + ∂IQ is
the entire bounding surface ofQ in the volumeΩ. As an example of the meaning of this result,
considerQ to be a vector quantity, take the trace of (32), and the resultis just a statement of
the well-known divergence theorem for vectors.

A second result of interest is that

∇

∫

Ω

Qd3x = ∇

∫

ΩQ

Qd3x =

∫

∂EQ

n̂QQdS. (33)

The result (33) follows from the fact that the volumesΩ(x) andΩ(x + δx) contain virtually
the same internal surfaces (in the limitδx → 0 they are obviously identical) and so these do
not contribute to the gradient.

Combining these results finally gives
∫

∂EQ

n̂QQdS = ∇

∫

Ω

Qd3x =

∫

Ω

∇Qd3x −

∫

∂IQ

n̂QQdS. (34)

Dividing by the total volumeV =
∫

Ω
d3x (which is a constant scalar, since the size ofΩ is the

same everywhere) contained inΩ gives the averaging theorem:

∇〈Q〉 = 〈∇Q〉 −
1

V

∫

∂IQ

n̂QQdS. (35)

Also note that the average〈Q〉 is an average over the whole volume ofΩ, while we also
sometimes need to consider the partial averageQ̄, related to the full volume average by

〈Q〉 = v̄QQ̄, (36)

wherev̄Q is the volume fraction ofΩ in whichQ is nonzero.
Finally, although this dependence is often not explicitly shown or even mentioned, all the

average quantities are in fact functions of the particular choice of averaging volumeΩ(x). In
principle, Ω(x) can be as large as the sample being studied, or as small as desired. The le-
gitimacy of the averaging theorem itself does not depend at all on the size of this averaging
volume. However, the usefulness of the resulting meso- or macro-scale equations does de-
pend on this choice and so some intermediate size is generally picked forΩ(x). Too small of
an averaging volume implies rapid fluctuations in the quantities of interest (like the fluid and
solid dilatations), while a very large averaging volume implies all the coefficients in the equa-
tions are universal constants and, therefore, can prevent us from studying the effects of local
inhomogeneities, whenever they are present.
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Note, for example, that a most desirable (but not always correct) consequence of (35) is
for the final surface integral to vanish identically. The vanishing of this integral is natural in
statistically homogeneous media because the unit outward normal vector averages to zero ifQ
is approximately constant on this surface. Vanishing of this surface integral is therefore often
highly likely in reasonably homogeneous media in 3D (averaging over a 2D surface), still likely
but somewhat less so in 2D (averaging over a 1D curve), and in general will not vanish in 1D
(averaging over just two points) for any but some rather trivial model problems. So volume
averaging methods should be replaced in 1D by exact methods such as, for example, Backus
averaging (Backus 1962) for pertinent 1D applications.

In wave problems, whenΩ is larger than the wavelength, the displacements will tend to
average to zero, which is clearly an undesirable result. Pride et al. (1992) provide further
discussion of criteria for choosing the size of the averaging volume. Thus, the choice of the
averaging volume is often based on the same or similar issuesnormally used to pick an REV
(representative elementary volume) in other methods, but we believe it is useful to maintain a
strict distinction between these two concepts as the motivations for choices made are sometimes
different.

Applications
Volume averaging has been applied successfully to derive the form of Biot’s equations of

poroelasticity (Pride et al. 1992), and more recetly a wide variety of other up-scaling prob-
lems in double-porosity poroelasticity (Tuncay and Corapcioglu 1995; Pride and Berryman
1998; Berryman and Pride 1998; Pride and Berryman 2003a; Pride and Berryman 2003b).
The method is well-suited to obtaining the forms of the equations, but needs to be supple-
mented when the values of the coefficients in the equations are required. The supplements can
obviously be obtained experimentally, in which case the theory can be treated as a phenomeno-
logical one — like Biot’s original formulation using Lagrangian variational principles. But,
as explained previously, being phenomenological is not a major limitation since of most of
the theories and equations of mathematical physics are in fact phenomenological in the same
sense. There are some cases in poroelasticity where variousother theoretical means, including
some of those already mentioned here, such as effective medium theories and periodic cell ho-
mogenization theory, can be applied to obtain estimates of the constants (Mavko et al. 1998;
Milton 2002). And in some special cases, exact results are known (Berryman and Milton 1991;
Berryman and Pride 2002) for a two-component solid matrix. In these situations the problems
can be solved explicitly and quite easily. In most other situations, it remains an open question
whether the coefficients in the equations can be determined accurately either by exact or some
well-controlled but approximate means.

CONCLUSIONS
Four methods of up-scaling coupled equations at the microscale to equations valid at the

mesoscale and/or macroscale for fluid-saturated and partially saturated porous media have been
discussed, compared, and contrasted. The four methods were: (1) effective medium theory, (2)
mixture theory, (3) two-scale and multiscale homogenization, and (4) volume averaging. All
these methods have advantages for some applications and disadvantages for others. Effective
medium theory, mixture theory, and homogenization methodscan all give formulas for coef-
ficients in the up-scaled equations, whereas volume averaging methods give the form of the
up-scaled equations but generally must be supplemented with physical arguments and/or data
in order to determine the coefficients. Homogenization theory requires a great deal of math-
ematical insight from the user in order to choose appropriate scalings for use in the resulting
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power-law expansions, while volume averaging requires more physical insight to motivate the
steps needed to find coefficients. Homogenization often is performed on periodic models, while
volume averaging does not require any assumption of periodicity and can therefore be related
very directly to laboratory and/or field measurements. Validity of the homogenization process
is often limited to specific ranges of frequency – in order to justify the scaling hypotheses that
are made – and therefore cannot be used easily over wide ranges of frequency. However, vol-
ume averaging methods can quite easily be used for wide band data analysis. So, we learn from
these comparisons that a researcher in the theory of poroelasticity and its generalizations needs
to be conversant with more than one of the methods to solve problems generally.

In this short review, we have not attempted to cover all methods that might be of interest and
value for the applications considered. In particular, we have avoided discussion of ensemble
averaging methods as well as other methods that might take the details of the spatial statistics
of the complex heterogeneous media directly into account, or provide additional information
about important corrections to the average equations. Recent publications by Drugan and Willis
(1996) and Drugan (2003) suggest that such methods may also be of great value for analysis of
the effective equations of poroelasticity, but these applications await further development.
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